
Journal of Sound and Vibration (1998) 210(4), 483–515

PRINCIPAL RESPONSE OF DUFFING OSCILLATOR
TO COMBINED DETERMINISTIC AND

NARROW-BAND RANDOM PARAMETRIC
EXCITATION

H. R, W. X  T. F

Institute of Vibration Engineering, Northwestern Polytechnical University, Xi’an 710072,
China

(Received 11 December 1996, and in final form 9 September 1997)

The principal resonance of a Duffing oscillator to combined deterministic and
narrow-band random parametric excitations is investigated. In particular, the case in which
the parametric terms share close frequencies is examined. The method of multiple scales
is used to determine the equations of modulation of amplitude and phase. The behavior,
stability and bifurcation of steady state response are studied by means of qualitative
analyses. Jumps are shown to occur if the random excitation is small. The effects of
damping, detuning, and magnitudes of deterministic and narrow-band parametric
excitations are analyzed. The theoretical analyses are verified by numerical results.
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1. INTRODUCTION

Most physical excitations exhibit a randomly fluctuating character and contain a wide
spectrum of frequencies, which may result in severe vibrations. Due to the highly
unpredictable trends of these natural hazard excitations, it is necessary to have some
stochastic formulations to describe them. As they can be fully characterized by probability
density functions or certain statistical measures, the method of random vibrations has a
wide range of applications to practical engineering problems.

However, most of the researchers in our field concentrate their attention on the response
of system only under random external excitation. There are many phenomena in which
parametric and self-excited vibrations interact with one another. Examples are
flow-induced vibrations and vibrations in rotor systems. So, the study of the random
parametric excited systems are more important than that of random external excited ones,
and are theoretically more difficult especially when the excitations are narrow-band
random processes [1]. In the case when the systems are excited by combined deterministic
harmonic and wide-band random processes, Stratonovitch and Romanoviskii [2],
Dimentberg et al. [3], and Namachchivaya [4] used the method of random averaging and
Khasminskii to investigate the almost certain stability of the system. The moment stability
was discussed by Ariaratnam and Tam [5], and Dimentberg [6] investigated the response
of the systems. Until now, the analyses of the responses and stability of non-linear systems
under combined deterministic and narrow-band random excitation have not been
investigated.

In this paper, the principal resonance of a Duffing oscillator to combined deterministic
and narrow-band random parametric excitations is investigated. In particular, the case in
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which the parametric terms share close frequencies is examined. The method of multiple
scales is used to determine the equations of modulation of amplitude and phase. The
behavior, stability and bifurcation of steady state response are studied by means of
qualitative analyses. Jumps are shown to occur if the random excitation is small. The
effects of damping, detuning, and magnitudes of deterministic and narrow-band
parametric excitations are analyzed. The theoretical analyses are verified by numerical
results.

2. GENERAL ANALYSIS

Consider the Duffing oscillator under combined deterministic and narrow-band random
parametric excitations

ü+ obu̇+v2(u+ oau3)+ o(j(t)+ h0 cos V0 t+ k0 sin V0 t)u=0, (1)

where dots indicate differentiation with respect to the time t, o is a small parameter, b and
v are stiffness coefficient and natural frequency respectively, a represents the density of
the non-linear term, h0 and k0 are constants, V0 is the frequency of the deterministic
harmonic excitations, and j(t) is a narrow-band random process which is governed by the
following equation:

j(t)= h1 cos V1 t+ k1 sin V1 t, (2)

where h1 = h1 (ot), k1 = k1 (ot) are slowly varying stationary random processes with zero
means. Model (2) represents a wide kind of narrow-band random excitation. For example,
the zero-mean Gaussian narrow-band random process could be obtained by filtering a
white noise through a linear filter [7]

j� + gj� +V2
1j=zgV1 W, (3)

where V1 is the center frequency of j(t) and g is the bandwidth of the filter. The
autocorrelation function of the white noise W is given by

RW (t)=2pS0 d(t), (4)

where S0 is the spectrum constant of W and d is Dirac delta function. The spectrum density
function of j(t) given by equation (3) is

gV2
1S0

(V2
1 −v2)2 +v2g2:pS0 d(V1), g:0.

Substituting equation (2) into equation (3) and performing deterministic and stochastic
averaging of the equations for the modulations of h1 and k1 [8, 9], one obtains

h� 1 +
g

2
h1 =Xg

2
W1

g
G

G

G

G

F

f
k� 1 +

g

2
k1 =Xg

2
W2. (5)

The white noise components W1 and W2 are independent and their autocorrelation
functions are given by equation (4). The autocorrelation functions of h1 and k1 are

Rh1 (t)=Rk1 (t)= pS0 exp(−1
2 g =t =). (6)
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The correlation time of h1 and k1 is of o(1/g). This means that for a sufficiently small value
of g, h1 and k1 are slowly varying functions of time.

The method of multiple scales [10] has been widely used in the analysis of deterministic
systems. Rajan and Davies [8], Nayfeh and Serhan [9] extend this method to the analysis
of non-linear systems under random external excitations. In this paper, the multiple scale
method is used to investigate the response and stability of system (1). Then, a uniformly
approximate solution of equation (1) is sought in the form

u(t, o)= u0 (T0, T1)+ ou1 (T0, T1)+ · · · , (7)

where T0 = t is a fast scale and T1 = et is a slow scale.
Since h1 and k1 are slowly varying functions of time, one obtains

h1 = h1 (T1), k1 = k1 (T1).

By denoting D0 = 1/1T0 and D1 = 1/1T1, the ordinary-time derivatives can be transformed
into partial derivatives as

d
dt

=D0 + oD1,
d2

dt2 =D2
0 +2oD0 D1.

Substituting equation (7) into equation (1) and equating coefficients of like powers of o,
one obtains

D2
0u0 +v2u0 =0, (8)

D2
0u1 +v2u1 =−2D0 D1 u0 − bD0 D1 u0 − (j(t)+ h0 cos V0 t+ k0 sin V0 t)u0 − av2u3

0. (9)

The general solution of equation (8) can be written as

u0 (T0, T1)=A(T1) exp(ivT0)+ cc, (10)

where cc represents the complex conjugate of its preceding term, and A(T1) is the slowly
varying amplitude of the response. Hence, equation (9) becomes

D2
0u1 +v2u1 =−2ivA' exp(ivT0)− ivbA exp(ivT0)

− av2A3 exp(3ivT0)−3av2A2A� exp(ivT0)

−
A
2

(h0 − ik0) exp[i(V0 +v)T0]−
A�
2

(h0 − ik0) exp[i(V0 −v)T0]

−
A
2

(h1 − ik1) exp[i(V1 +v)T0]−
A�
2

(h1 − ik1) exp[i(V1 −v)T0]+ cc, (11)

where the prime stands for the derivative with respect to T1 and the overbar stands for
the complex conjugate. Any particular solution of equation (11) contains secular terms,
which are generated by the first, second and fourth terms on the right-hand side of
equation (11). Moreover, it may contain small-divisor terms dependent on the resonance
conditions. From the sixth and eighth terms on the right-hand side of equation (11), it is
clear that resonance occurs when V0 1 2v, or V1 1 2v, or both conditions apply. In what
follows we shall investigate the principal resonances of the system (1), in which V0 and
V1 are either far apart or close to each other.

3. PRINCIPAL PARAMETRIC RESONANCE I

Here we consider the case of principal resonance when V0 1 2v but V1 is far from V0.
Introducing the detuning parameter s as follows
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V0 =2v+ os, (12)

one has

(V0 −v)T0 =vT0 + sT1.

Using the above equation, we can transform the small-divisor term which arises from
exp[i(V0 −v)T] in equation (11) into a secular term. Then, eliminating the secular terms
yields

2ivA'+ ibvA+3av2A2A�+ 1
2 A�(h0 − ik0) exp(isT1)=0. (13)

Expressing A in the polar form

A(T1)= a(T1) exp[i8(T1)]. (14)

Substituting equation (14) into equation (13) and separating the real and imaginary parts
of equation (13), one obtains

a'=−
b

2
a+

a
4v

(k0 cos h− h0 sin h)

g
G

G

F

fah'= sa−3ava3 −
a
2v

(h0 cos h+ k0 sin h),
(15)

where h= sT1 −28. Equations (15) are the first-order equations governing the
modulation of amplitude and phase. After solving a and h from these equations, the
first-order uniform expansion of the solution of equation (1) is given by

u=A(T1) exp(ivT0)+ cc+O(o)

= a exp$i0vT0 +
s

2
T1 −

h

21%+ cc+O(o)

= a exp$i0V0

2
t−

h

21%+ cc+O(o)

=2a(ot) cos $V0

2
t−

h(ot)
2 %+O(o). (16)

3.1.     

It is obvious that equations (15) have a solution a=0, which corresponds to the trivial
steady state response. Non-trivial steady state responses correspond to the non-trivial fixed
points of equations (15). That is, they satisfy a'=0, h'=0, a$ 0, and are given by

b=
1

2v
(k0 cos h− h0 sin h)

g
G

G

F

f
s−3ava2 =

1
2v

(h0 cos h+ k0 sin h). (17)
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Eliminating sin h and cos h from equations (17) yields the frequency response relation

a=
1

zv $ s

3a
2

1
3aXh2

0 + k2
0 −4v2b2

4v2 %
1/2

. (18)

It can be shown that non-trivial steady state solutions exist, at most, in a finite interval
of the detuning parameter s. Indeed, from (18) the region of existence of non-trivial steady
state response is given as follows

h2
0 + k2

0 q 4v2b2, (19)

when aq 0, and

sQXh2
0 + k2

0 −4v2b2

4v2 , (20)

there is a trivial steady state response, together with a non-trivial steady state response
whose stability needs further investigation. When aq 0, and

sqXh2
0 + k2

0 −4v2b2

4v2 , (21)

there is a trivial steady state response together with two non-trivial steady state responses
which may be stable or unstable.

Only stable responses can be observed in the number simulation. To determine the
stability of the trivial steady state response, it is convenient to rewrite A in the form

A=(x+ iy) exp(isT1 /2). (22)

Then equation (13) is equivalent to the following equations

x'=0−b

2
+

k0

4v1x+0s2+
h0

4v1y− 3
2 av(x2 + y2)y

g
G

G

G

G

F

fy'=0−s

2
+

h0

4v1x+0−b

2
−

k0

4v1y+ 3
2 av(x2 + y2)x. (23)

The stability of the trivial solution A=0 of equation (13) is the same as that of equation
(23). The linearization of equation (23) at (0, 0) is

x'=0−b

2
+

k0

4v1x+0s2+
h0

4v1y
g
G

G

G

G

F

f y'=0−s

2
+

h0

4v1x+0−b

2
−

k0

4v1y. (24)

The eigenvalues of the coefficient matrix of equations (24) are

l1,2 =−
b

2
2

1
4v

zh2
0 + k2

0 −4s2v2. (25)
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Figure 1. The parameter area of the steady state solution.

The trivial solution is asymptotically stable if the real parts of li (i=1, 2) are less than
zero, and it is unstable if at least one of the real parts of li is larger than zero. As a result,
we conclude that the trivial solution of equations (23) is stable if and only if

h2
0 + k2

0 Q 4v2(b2 + s2). (26)

To determine the stability of the non-trivial steady state responses given by (18),
equations (15) are used. Let

a= a0 + a1, h= h0 + h1, (27)

where (a0, h0) is given by (17), and a1, h1 are perturbation terms. Substituting equations
(27) into equations (15) and neglecting the non-linear terms, one obtains the linearization
of the modulation equations (15) at (a0, h0)

a'1 =−
a0

4v
(k0 sin h0 + h0 cos h0)h1

g
G

G

F

fh'1 =−6ava0 a1 −
1

2v
(k0 cos h0 − h0 sin h0)h1. (28)

Figure 2. Frequency response of Duffing system: ——, stable solution; –––, unstable solution.
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Figure 3. Response of Duffing system: ——, stable solution; –––, unstable solution.

'

The eigenvalues of the coefficient matrix of equations (28) are

l1,2 =−
b

2
2 1

2 zb2 +6aa2
0(h0 cos h0 + k0 sin h0). (29)

If (h0 cos h0 + k0 sin h0) is positive, the non-trivial steady state solutions of equations (15)
are always unstable. From equations (17) one obtains

h0 cos h0 + k0 sin h0 =2v(s−3ava2
0).

Figure 4. Time history of j(t). (a) g=0·02; (b) g=0·1; (c) g=0·5; (d) g=1·0.
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So, if equations (19) and (20) both take place, equations (15) may have one
stable non-trivial steady state solution, and if equations (19) and (21) both hold, equations
(15) would have two possible non-trivial steady state solutions, from which the larger one
is stable and the smaller one unstable.

Above all, according to the detuning parameter s and the amplitude of the deterministic
harmonic excitation h=zh2

0 + k2
0 , the stability area of steady state solution of equations

(15) can be divided into the following three parts, as shown in Figure 1,

area I= {(s, h): sQ 0, hQ 2vzb2 + s2}* {(s, h): sq 0, hQ 2vb},

area II= {(s, h): hq 2vzb2 + s2},

area III= {(s, h): sq 0, 2vbQ hQ 2vzb2 + s2}.

In area I, only the trivial steady state solution is stable and so the response of equation
(1) will converge to zero for any initial value when t:a. In area II, only the non-trivial
steady state solution is stable and so the response of equation (1) will converge to this
non-trivial solution for any non-trivial initial value when t:a. In area III, the trivial
steady state solution and the larger steady state solution are stable so the response of
equation (1) may converge to zero or the larger steady state solution for different initial
values.

3.2.       

If s is chosen to be a bifurcation parameter and the intensity of deterministic harmonic
excitation h=zh2

0 + k2
0 q 2vb as a constant, when s increases from a small value, the

Figure 5. Numerical results of equation (1): V0 =1·8, V1 =10·0, h0 = k0 =2·0, s2
j =1·0. (a) Time history of

u(t); (b) phase plot; (c) spectrum with frequency of u(t).
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variation of steady state response with s is shown in Figure 2 along A1:A2:A'3 . At the
point A2, i.e., when

s= s1 =−Xh2 −4v2b2

4v2 =−Xh2
0 + k2

0 −4v2b2

4v2 , (30)

the steady state response turns from a trivial one to a non-trivial one when s increases;
so s1 is a bifurcation point. When s decreases from a large value, the variation of steady
state response with s is shown in Figure 2 along A3:A'3:A2:A1. At the point A3, i.e.,
when

s= s2 =Xh2 −4v2b2

4v2 =Xh2
0 + k2

0 −4v2b2

4v2 , (31)

the steady state response will jump from A3 to A'3 , so s2 is also a steady state response
bifurcation point.

If h is chosen as a bifurcation parameter and sq 0 as a constant, when h increases from
a small value, the variation of steady state response with h is shown in Figure 3. At the
point B3, i.e., when

h= h1 =2vzb2 + s2, (32)

Figure 6. Numerical results of equation (1): V0 =2·05, V1 =10·0, h0 = k0 =2·0, s2
j =1·0. (a) Time history of

u(t); (b) phase plot; (c) spectrum with frequency of u(t).
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the steady state response will jump from B3 to B'3 . When h decreases from a large value,
the variation of steady state response with h is shown in Figure 3 through D:B'3:C. At
point C, i.e., when

h= h2 =2vb, (33)

the steady state response will jump from C to B2, so h1 and h2 are also bifurcation points.

3.3.  

In the theoretical analyses above, the narrow-band random excitation j(t) can be
modelled by equation (2) or (3). For numerical simulation it is more convenient to use the
pseudorandom signal given by [8, 11]

j(t)=X2s2
j

N
s
N

k=1

cos (vk t+8k ). (34)

The frequency vk is chosen independently from a random population with probability
density function which is the same as the spectrum of j(t), and the random phases 8k’s
are independent and uniformly distributed in (0, 2p). Shinozuka [11] has shown that j(t)
tends to a Gaussian process as N:a. For the very narrow-band simulations used here,
the spectrum chosen is a simple top-hat type, and the random frequencies vk’s are

Figure 7. Numerical results of equation (1): V0 =2·2, V1 =10·0, h0 = k0 =2·0, s2
j =1·0, u(0)=−2·2,

u̇(0)=2·0. (a) Time history of u(t); (b) phase plot; (c) spectrum with frequency of u(t).
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Figure 8. Numerical results of equation (1): u(0)=1·1, u̇(0)=1·1 (other parameters are the same as in
Figure 7). (a) Time history of u(t); (b) phase plot; (c) spectrum with frequency of u(t).

distributed uniformly in (V1 − g/2, V1 + g/2). When N is large enough, Rajan and Davies
[8] show

Ej2(t)= s2
j , Ej4(t)=3s4

j .

In the numerical simulation, the parameters in systems (1) and (34) are chosen as follows:
N=500, g=0·1, o=0·1, b=0·5, a=0·1, and v=1·0.

Figure 9. Frequency response of Duffing system: h0 = k0 =2·0, V1 =10·0, s2
j =1·0. ——, Stable solution;

–––, unstable solution; www, numerical solution.



a

0.50.0

0

–1

1

2

3

4

1.0 1.5 2.0 2.5 3.0 3.5 4.0

h

.   .494

The time history of the narrow-band random excitation j(t) defined by equation (34)
is shown in Figure 4. The governing equation (1) is numerically integrated by the fourth
order Runge–Kutta algorithm, and the numerical results are shown in Figures 5–8. In
Figure 5, the parameters (s, h) are in area I, so the steady state response is a trivial
solution. In Figure 6, the parameters (s, h) are in area II, so the steady state response is
a non-trivial solution. In Figures 7 and 8, the parameters (s, h) are in area III, so the steady
state response may tend to the trivial solution (Figure 7) or to the non-trivial solution
(Figure 8), depending on the initial values. Jumps are also observed in the simulation. The
variations of the steady state response with s is shown in Figure 9. The variations of the
steady state response with h are shown in Figure 10.

4. PRINCIPAL PARAMETRIC RESONANCE II

Here, the case of principal parametric resonance is considered when V1 1 2v but V0 is
far from V1. Introducing the detuning parameter s as follows

V1 =2v+ os, (35)

one has

(V1 −v)T0 =vT0 + sT1.

Using the above equation, the small-divisor term which arise from exp[i(V1 −v)T] in
equation (11) can be transformed into a secular term. Then, eliminating the secular term
yields

2ivA'+ ibvA+3av2A2A�+ 1
2 A�[h1 (T1)− ik1 (T1)] exp(isT1)=0. (36)

4.1.     

Substituting equation (22) into equation (36) and separating the real and imaginary parts
of equation (36), one obtains

x'=0−b

2
+

k1

4v1x+0s2+
h1

4v1y− 3
2 av(x2 + y2)y

g
G

G

G

G

F

f
y'=0−s

2
+

h1

4v1x+0−b

2
−

k1

4v1y+ 3
2 av(x2 + y2)x. (37)

Figure 10. Response of Duffing system: V1 =10·0, s2
j =1·0, s=1·0. ——, Stable solution; –––, unstable

solution; www, numerical solution.
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The stochastic Lyapunov function can be constructed as follows

V(T1)= x2(T1)+ y2(T1).

From equations (37) one has

V'=−bV+
1

2v
(k1 x2 +2h1 xy− k1 y2)E0−b+

=h1 =+ =k1 =
2v 1V,

which yields

V(T)EV(0) exp$g
T

0 0−b+
=h1 (T1) =+ =k1 (T1) =

2v 1 dT1 %. (38)

For ergodic random processes h1 and k1 and large enough t, one obtains

1
T g

T

0 0−b+
=h1 (T1) =+ =k1 (T1) =

2v 1 dT1:−b+
1

2v
(E =h1 =+E =k1 =),

with probability one. From the above equation and equation (38), it can be concluded that
if there exists some positive number o1 q 0, such that

−b+
1

2v
(E =h1 =+E =k1 =)Q−o1, (39)

then V(T) will tend to zero while T:a, so that the trivial solution of equations (37) is
almost certainly stable. If only the second moments of h1 and k1, are known by Schwarz
inequality the sufficient almost certain stability condition of the trivial solution of
equations (37) can be obtained as follows

E(h2
1 + k2

1)Q 2v2b2.

From equation (5) one has

Eh2
1 =Ek2

1 =Ej2(t)= s2
j ,

hence the sufficient almost certain stability condition can be rewritten as

s2
j Qv2b2. (40)

To obtain the necessary and sufficient almost certain stability condition of equations
(37), its linearized equation is considered in the neighborhood of (0, 0).

x'=0−b

2
+

k1

4v1x+0s2+
h1

4v1y
g
G

G

G

G

F

f
y'=0−s

2
+

h1

4v1x+0−b

2
−

k1

4v1y. (41)

For ergodic random processes h1 and k1, according to Oseledec multiplicative ergodic
theorem [12], it can be concluded that for any initial value (x0, y0) the Lyapunov exponent
of the solution (x(T1, x0), y(T1, y0)) of equations (41) is

l(x0, y0)= lim
T1:a

1
T1

ln zx2(T1, x0)+ y2(T1, y0), w.p.1 (42)
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and l(x0, y0) can take only the following deterministic values

lmin = l2 Q l1 = lmax .

So the almost certain stability of the trivial solution (41) can be determined by the largest
Lyapunov exponent l= lmax , i.e., when lQ 0 the trivial solution is almost certainly
stable and when lq 0 the trivial one is unstable.

By the following transformation

x= a cos
h

2
, y=−a sin

h

2
, r=ln a, a$ 0, (43)

equations (41) can be rewritten as

a'=−
b

2
a+

a
4v

(k1 cos h− h1 sin h)

h'= s−
1

2v
(h1 cos h+ k1 sin h) (44)

r'=−
b

2
+

1
4v

(k1 cos h− h1 sin h).

Then the largest Lyapunov exponent is

l=−
b

2
+

1
4v

lim
T:a

1
T g

T

0

[k1 (T1) cos h(T1)− h1 (T1) sin h(T1)] dT1. (45)

4.2. -   

For small intensities of random excitation the values of h1 and k1 are small, and so from
equation (45) it is obvious that the largest Lyapunov exponent of equations (41) is less
than 0, i.e., the trivial steady state response is stable. When s2

j of the random excitation
increases, the trivial steady state solution will become unstable and so there will be a
non-trivial steady state solution. To obtain the probability characteristic of the non-trivial
steady state solution, by transformation (14) we rewrite equation (36) as

a'=−
b

2
a+

a
4v

(k1 cos h− h1 sin h)

h'= s−3ava2 −
1

2v
(h1 cos h+ k1 sin h). (46)

Then the first order approximate solution of equation (1) is

u=2a(ot) cos $V1

2
t−

h(ot)
2 %+O(o).

By the averaging technique, equations (46) can be reduced to

a'=−
b

2
a+

a
4v

h cos u

u'= s−3ava2 −
h
2v

sin u, (47)

g
G

G

G

G

F

f

g
G

G

F

f

g
G

G

F

f
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where

u=arctan
k1

h1
+ h, h=zh2

1 + k2
1 .

The temporal average over a fundamental period 2p/V1 is implied here. The term
(arctan k1 /h1)' has been set to zero.

Since it is difficult to solve equations (17) exactly, we have no choice but to make some
approximation. Since h1 and k1 are independent identically distributed Gaussian
distribution N(0, s2

j), it is easy to know that the distribution function of h is a Rayleigh
distribution

f(h)=
h
s2

j

exp0− h2

2s2
j1.

Therefore, h takes a value concentrated on its expectation

Eh=Xp

2
sj .

Let Dh= h−Eh, we have

E(Dh)2 =
4− p

2
s2

j .

When compared with Eh, Dh is a small, so we can use the perturbation method
to solve equations (47). When h=Eh and Dh=0, equations (47) have the following
solution

a0 =
1

zv $ s

3a
2

1
3aX(Eh)2 −4v2b2

4v2 %
1/2

g
G

G

G

G

F

f
s−3ava2

0 =
Eh
2v

sin u0.

When Dh$ 0, let

a= a0 + a1, u= u0 + u1,

where a1 and u1 are small terms. Substituting the above equations into equations (47) and
neglecting the non-linear terms, we obtain the linearized equations

a'1 =−
1

4v
a0 Eh sin u0 u1 +

1
4v

a0 cos u0 Dh

g
G

G

F

fu'1 =−6ava0 a1 −
1

2v
Eh cos u0 u1 −

1
2v

sin u0 Dh.
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The first and second moments of the solution of the above equations, Ea1 and Ea2
1, can

be obtained by the moment method [1]. For steady state response, one obtains

dEa1

dt
=

dEu1

dt
=

dEa1 Dh
dt

=
dEu1 Dh

dt
=

dEa2
1

dt
=

dEu2
1

dt
=

dEa1 u1

dt
=0,

which yields

1
4v

a0 Eh sin u0 Eu1 =
1

4v
a0 cos u0 EDh

6ava0 Ea1 +
1

2v
Eh cos u0 Eu1 =−

1
2v

sin u0 EDh

1
4v

a0 Eh sin u0 E(Dhu1)=
1

4v
a0 cos u0 E(Dh)2

6ava0 E(a1 Dh)+
1

2v
cos u0 E(u1 Dh)=−

1
2v

sin u0 E(Dh)2

1
4v

a0 Eh sin u0 E(a1 u1)=
1

4v
a0 cos u0 E(a1 Dh)

6ava0 E(a1 u1)+
1

2v
Eh cos u0 Eu2

1 =−
1

2v
sin u0 E(Dhu1)

−
1

4v
a0 Eh sin u0 Eu2

1 +
1

4v
a0 cos u0 E(Dhu1)−6ava0 Ea2

1

−
1

2v
Eh cos u0 E(u1 a1)−

1
2v

sin u0 E(a1 Dh)=0.

The above equations have the solution

E(u1 Dh)=
1

Eh
cotan u0 E(Dh)2

E(a1 Dh)=−
1

12ava2
0 sin u0

E(Dh)2

E(a1 u1)=
1

Eh
cotan u0 E(a1 Dh) (48)g

G

G

G

G

G

G

G

G

F

f

Eu2
1 =

cotan2 u0

(Eh)2 E(Dh)2

Ea2
1 =

1
(12ava2

0 sin u0)2 E(Dh)2.

4.3.  

From section 3.3, vk’s are distributed uniformly in

0V1 −
g

2
, V1 +

g

21.

So vk can be written as

vk =V1 + gv̄k .
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From equation (34),

j(t)=X2s2
j

N
s
N

k=1

cos [(V1 + gv̄k )t+8k ]

=X2s2
j

N
s
N

k=1 $cos (V1 t) cos 0go v̄k T1 +8k 1−sin (V1 t) sin 0go v̄k T1 +8k 1%.

From equation (2), h1 and k1 are given by

h1 (T1)=X2s2
j

N
s
N

k=1

cos 0go v̄k T1 +8k 1
g
G

G

G

G

F

f
k1 (T1)=−X2s2

j

N
s
N

k=1

sin 0go v̄k T1 +8k 1, (49)

where 8k’s are independent and uniformly distributed in (0, 2p), v̄k’s are independent and
uniformly distributed in (−0·5, 0·5). The time history of h1 is shown in Figure 11.

Equations (44) are numerically integrated by the fourth order Runge–Kutta algorithm,
and equation (45) is numerically integrated by the Simpson algorithm. In the numerical
simulation, the parameters in systems (1) and (49) are chosen as follows: N=500, g=0·1,
o=0·1, b=0·5, a=0·1, v=1·0.

The variation of the largest Lyapunov l governed by equation (45) with s and s2
j is

shown in Figure 12 as l−(s, s2
j) surface. When l=0 the corresponding s2

j–s curve is

Figure 11. Time history of h1. (a) g=0·02; (b) g=0·1; (c) g=0·5; (d) g=1·0.
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Figure 12. Largest Lyapunov exponent of Duffing system.

shown in Figure 13, which is the almost certain stability boundary of the trivial
steady state solution of equations (41). When (s, s2

j) is located above the curve,
the corresponding trivial steady state solution is not stable; while it is located below
the curve, the corresponding trivial steady state solution is stable. The numerical
results of the stability boundary of equation (1) by different methods are shown in
Figure 14.

As the random excitation s2
j becomes larger, equation (1) will have a non-trivial steady

state solution. When s2
j =100, the first and second steady state moments governed by

equations (48) are shown in Figure 15 while s changes from −2 to 2. For comparison
in Figure 15, the numerical result of equation (1) is also shown. When s=1·0 the
variations of Ea and Ea2 with s2

j are shown in Figure 16. When s=−1, h0 = k0 =2 and

Figure 13. Stability area of Duffing system.
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Figure 14. Stability area of Duffing system. ——, Stability area via equation (45); · · · · , stability area via
equation (40); www, stability area via simulation.

V0 =10, the time histories of u(t) governed by equation (1) for several different values of
s2

j are shown in Figure 17.

5. PRINCIPAL PARAMETRIC RESONANCE III

Here, the case of principal parametric resonance is considered when V0 =V1 1 2v.
Introducing the detuning parameter s as follows

V0 =V1 =2v+ os, (50)

one has

(V0 −v)T0 = (V1 −v)T0 =vT0 + sT1.

By the above assumption, eliminating the secular terms in equation (11) yields

2ivA'+ ibvA+3av2A2A�+ 1
2 A�[h0 + h1 − i(k0 + k1)] exp(isT1)=0. (51)

Figure 15. Frequency response of Duffing system: h0 = k0 =2·0, V0 =10·0, s2
j =100·0. (a) Ea; (b) Ea2:

——, theoretical solution; www, numerical solution.
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Figure 16. Steady state response of Duffing system: h0 = k0 =2·0, V0 =10·0, s=1·0. (a) Ea; (b) Ea2:
——, theoretical solution; www, numerical solution.

5.1.    

Substituting equation (22) into equation (51) and separating the real and imaginary parts
of equation (51), one obtains

Figure 17. Frequency response of Duffing system: h0 = k0 =2·0, V0 =10·0. (a) s2
j =1·0; (b) s2

j =9·0;
(c) s2

j =25·0; (d) s2
j =100·0.
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x'=0−b

2
+

k0 + k1

4v 1x+0s2+
h0 + h1

4v 1y− 3
2 av(x2 + y2)y

g
G

G

G

G

F

f
y'=0−s

2
+

h0 + h1

4v 1x+0−b

2
−

k0 + k1

4v 1y+ 3
2 av(x2 + y2)x. (52)

Using a similar technique as shown in section 4.1, we obtain the sufficient almost certain
stability condition of the trivial steady state solution of equations (52) as follows

s2
j Q 1

4 (2vb−zh2
0 + k2

0 )2, zh2
0 + k2

0 Q 2vb. (53)

To obtain the necessary and sufficient almost certain stability condition of equations
(52), its linearized equation is considered in the neighborhood of (0, 0)

x'=0−b

2
+

k0 + k1

4v 1x+0s2+
h0 + h1

4v 1y
y'=0−s

2
+

h0 + h1

4v 1x+0−b

2
−

k0 + k1

4v 1y.
(54)

Substituting equations (43) into equations (54), one obtains

a'=−
b

2
a+

a
4v

[(k0 + k1) cos h−(h0 + h1) sin h]

h'= s−
1

2v
[(h0 + h1) cos h+(k0 + k1) sin h] (55)

r'=−
b

2
+

1
4v

[(k0 + k1) cos h−(h0 + h1) sin h].

Then the largest Lyapunov exponent of the trivial steady state solution of equations (54)
may be found as

l=−
b

2
+

1
4v

lim
T:a

1
T g

T

0

[(k0 + k1) cos h(T1)− (h0 + h1) sin h(T1)] dT1. (56)

When lQ 0 the trivial solution is stable, when lq 0 the trivial solution is unstable.

5.2. -   

For small s2
j , when the parameters (s, zh2

0 + k2
0 ) of equation (51) are located in area

I or III, equation (51) has only a trivial steady state response. As s2
j gets larger, the trivial

steady state solution will become unstable. When the parameters (s, zh2
0 + k2

0 ) of equation
(51) are located in area II, equation (51) will have a non-trivial steady state solution. To
obtain the first and second steady state moments, we use transformation (14) and rewrite
equation (51) into

a'=−
b

2
a+

a
4v

[(k0 + k1) cos h−(h0 + h1)sin h]

h'= s−3ava2 −
1

2v
[(h0 + h1) cos h+(k0 + k1) sin h]. (57)

g
G

G

G

G

F

f

g
G

G

G

G
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f

g
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Then the first order approximate solution of equation (1) takes the same form as shown
in equation (16). Hence, by taking temporal average, equations (57) can be reduced to

a'=−
b

2
a+

a
4v

h cos u

g
G

G

F

fu'= s−3ava2 −
h
2v

sin u,
(58)

where

u=arctan
k0 + k1

h0 + h1
+ h, h=z(h0 + h1)2 + (k0 + k1)2.

Here the fast varying terms such as (h0 + h1)W2 and (k0 + k1)W2, and the small terms such
as gk1 (h0 + h1) and gh1 (k0 + k1), i.e., (arctan (k0 + k1)/(h0 + h1))' are set to zero in the
reduction of equations (57) to (58). Equations (58) have the same form as equations (47),
and so the discussions in section 4.2 are also available here, except Eh and E(Dh)2 in
equations (48) should be changed to

Eh=Ez(h0 + h1)2 + (k0 + k1)2

g
G

G

G

G

F

f

=
1

2ps2
j g

+a

−a g
+a

−a

z(h0 + x)2 + (k0 + y)2 exp0−x2 + y2

2s2
j 1 dx dy (59)

E(Dh)2 =2s2
j −(Eh)2 + h2

0 + k2
0.

From equations (48) the first and second steady state moments Ea and Ea2 of equation
(51) can be obtained.

When the parameters (s, zh2
0 + k2

0 ) are located in area II or III and s2
j =0, the steady

state response of equation (51) corresponds to (a0, h0), which satisfies equations (17). When
the random excitations s2

j are small, the first and second steady state solution of equations
(57) can be obtained by perturbation method by assuming

a= a0 + a1, h= h0 + h1, (60)

where a1 and h1 are small terms. Substituting equations (60) into equations (57) and
neglecting the non-linear terms, we obtain the linearized equation

a'1 =
1

4v
(k1 cos h0 − h1 sin h0)a1 −

a0

4v
[(k0 + k1) sin h0 + (h0 + h1) cos h0]h1

+
a0

4v
(k1 cos h0 − h1 sin h0)

g
G

G

G

G

G

G

G

G

F

f

h'1 =−6ava0 a1 +$−b+
1

2v
(−k1 cos h0 + h1 sin h0)%h1

(61)

−
1

2v
(h1 cos h0 + k1 sin h0).
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where h1 and k1 are governed by equations (5). Ea and Ea2 can be obtained by moment
method. For the steady state moments, one has

u
dEa1

dt
=

dEh1

dt
=

dEa1 h1

dt
=

dEa1 k1

dt

=
dEh1 h1

dt
=

dEh1 k1

dt
=

dEa2
1

dt
=

dEh2
1

dt
=0,

with Eh2
1 =Ek2

1 = s2
j . The above equations yield

1
4v

(cos h0 Ea1 k1 − sin h0 Ea1 h1)−
a0

4v
(k0 sin h0 + h0 cos h0)Eh1

−
a0

4v
(sin h0 Eh1 k1 + cos h0 Eh1 h1)=0

−6ava0 Ea1 − bEh1 +
1

2v
(sin h0 Eh1 h1 − cos h0 Eh1 k1)=0

ḡ

2
Ea1 h1 +

a0

4v
(k0 sin h0 + h0 cos h0)Eh1 h1 =−

a0

4v
sin h0 s2

j

ḡ

2
Ea1 k1 +

a0

4v
(k0 sin h0 + h0 cos h0)Eh1 k1 =

a0

4v
cos h0 s2

j

6ava0 Ea1 h1 +0b+
ḡ

21Eh1 h1 =−
1

2v
cos h0 s2

j

6ava0 Ea1 k1 +0b+
ḡ

21Eh1 k1 =−
1

2v
sin h0 s2

j

(k0 sin h0 + h0 cos h0)Ea1 h1 = cos h0 Ea1 k1 − sin h0 Ea1 h1

Eh2
1 =−

1
2b $12ava0 Eh1 a1 +

1
v

(cos h0 Eh1 h1 + sin h0Eh1 k1)%
Ea2

1 =
1

6ava0 $− a0

4v
(k0 sin h0 + h0 cos h0)Eh2

1 − bEa1 h1

−
1

2v
(cos h0 Ea1 h1 + sin h0 Ea1 k1)+

a0

4v
(cos h0 Eh1 k1 − sin h0 Eh1 h1)%,
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where ḡ= g/o. The solutions of the above equations are

F
Ea1 h1 =$1

v
D1 cos h0 − (2b+ ḡ) sin h0 % a0

2D2 v
s2

jH
H
H
HEa1 k1 =$1

v
D1 sin h0 + (2b+ ḡ) cos h0 % a0

2D2 v
s2

jH
H
H

Eh1 h1 = (6ava2
0 sin h0 − ḡ cos h0)

1
D2 v

s2
jH

H
gEh1 k1 =−(6ava2

0 cos h0 + ḡ sin h0)
1

D2 v
s2

j (62)
H
H

Ea1 h1 =
2b+ ḡ

D1

a0

2D2 v
s2

jH
H
H Eh1 =

2b+3ḡ

D1

1
2D2 v

s2
jH

H
H Ea1 =

1
6ava0 $−b(2b+3ḡ)

D1
+6aa2

0% 1
2D2 v

s2
j ,f

where

D1 = k0 sin h0 + h0 cos h, D2 = (2b+ ḡ)ḡ−6aa2
0k0 D1.

Since (a0, h0) satisfies equations (17) and D1 Q 0, from equations (62) we can conclude that
Ea1 q 0, i.e., the random excitation changes the response of the system from a limit cycle
to a diffused limit cycle and the radius of the cycle will become large when s2

j increases.

Figure 18. Largest Lyapunov exponent of Duffing system: h0 = k0 =0·5, V0 =V1.
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Figure 19. Stability area of Duffing system: h0 = k0 =0·5, V0 =V1.

By a similar technique as used in section 5.1, the largest Lyapunov exponent of the
solutions a1 and h1 can be obtained as

8'= (c3 − c2)+ (c2 + c3) cos 8+(c4 − c1) sin 8

g
G

G

F

f l=−
b

2
+ 1

2 lim
T:a

1
T g

T

0

[(c1 − c4) cos 8(T1)+ (c2 + c3) sin 8(T1)] dT1, (63)

where

c1 =
1

4v
(k1 cos h0 − h1 sin h0),

c2 =−
a0

4v
[(k0 + k1) sin h0 + (h0 + h1) cos hc ],

c3 =−6ava0,

c4 =−b+
1

2v
(h1 sin h0 − k1 cos h0).

Figure 20. Stability area of Duffing system: h0 = k0 =0·5, V0 =V1. ——, Stability area via equation (45); · · · · ,
stability area via equation (40); www, stability area via simulation.
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Figure 21. Largest Lyapunov exponent of Duffing system: s2
j =1·0, V0 =V1.

5.3.  

In the numerical simulation, the parameters in systems (1) and (49) are chosen as follows:
N=500, g=0·1, o=0·1, b=0·5, a=0·1, v=1·0. When h0 = k0 =0·5, the variation of
the largest Lyapunov l governed by equation (56) with s and s2

j is shown in Figure 18
as l−(s, s2

j) surface. When l=0 the corresponding s2
j–s curves are shown in Figure 19.

The numerical results of the stability boundary of equation (1) are shown in Figure 20.
Figure 21 shows the variation of the largest Lyapunov exponent l governed by equation
(56) with s and h=zh2

0 + k2
0 , when s2

j =1·0. When l=0, the corresponding stability
boundaries are shown in Figure 22. When s2

j =100, the theoretical solutions governed by
equations (59) and (48), and the numerical results of equation (1) are shown in Figure 23.
When h0 = k0 =2, the theoretical and numerical results are shown in Figure 24. When
s2

j =0·1, h0 = k0 =2, the theoretical solution governed by equations (62) is compared with
the numerical result of equation (1) in Figure 25. When h0 = k0 =2, the variation of the
largest Lyapunov exponent l of equations (63) is shown in Figure 26 as l−(s, s2

j)

Figure 22. Stability area of Duffing system (V0 =V1).
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Figure 23. Frequency response of Duffing system: h0 = k0 =2·0, V0 =V1, s2
j =100·0. (a) Ea; (b) Ea2: ——,

theoretical solution; www, numerical solution.

surfaces. When l=0, the corresponding s2
j–s curve is shown in Figure 27. In

Figures 28–30, the numerical results of equation (1) are shown when s=1, h0 = k0 =2,
and it can be seen that the responses of equation (1) are diffused limit cycles when s2

j

increases.

5.4.   

While considering the almost certain stability bifurcation, the largest Lyapunov
exponent l can be treated as a bifurcation indicator. When lQ 0 the solution is stable and
when lq 0 the solution is unstable. If s2

j is chosen to be the bifurcation parameter and
h=zh2

0 + k2
0 , s to be constant, when s2

j increases from a small value, the trivial solution
of equation (51) will become unstable and the bifurcation of the steady state response is
shown in Figure 19. If =s = is chosen to be the bifurcation parameter and s2

j to be constant,
the trivial solution of equation (51) will become unstable and the bifurcation of the steady
state response is also shown in Figure 19. If h is chosen to be the bifurcation parameter
and s2

j , s to be constants, when h increases from a small value to a certain threshold value,

Figure 24. Steady state response of Duffing system: h0 = k0 =2·0, V0 =V1, s=1·0. (a) Ea; (b) Ea2: ——,
theoretical solution; www, numerical solution.
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Figure 25. Frequency response of Duffing system: h0 = k0 =2·0, V0 =V1, s2
j =0·1. (a) Ea; (b) Ea2:

——, theoretical solution; www, numerical solution.

the trivial solution of equation (51) will become unstable, and the bifurcation of the steady
state response is shown in Figure 22.

When the parameters (s, h) are located in area III and s2
j =0, from section 2 it can be

seen that equation (51) has two kinds of steady state solutions, i.e., trivial and non-trivial
solutions dependent on different initial values. For small s2

j these two steady state solutions
are stable, which can be observed in the numerical simulation. For small s2

j jumps are also
observed.

6. PRINCIPAL PARAMETRIC RESONANCE IV

Here, the case of principal parametric resonance is considered when V0 1 2v, V1 1 2v,
V0 $V1. Introduce the detuning parameters s and k as follows

V0 =2v+ os, V1 =V0 + ok=2v+ o(s+ k).

Figure 26. Largest of the perturbation solution: h0 = k0 =2·0, V0 =V1.
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Figure 27. Stability area of the perturbation solution; h0 = k0 =2·0, V0 =V1.

After eliminating the secular terms in equation (11), one has

2ivA'+ ibvA+3av2A2A�+ 1
2 A�(hc − ik0) exp(isT1)

+ 1
2 A�(h1 − ik1) exp(i(s+ k)T1)=0. (64)

Figure 28. Numerical results of equation (1): h0 = k0 =2·0, V0 =V1, s2
j =0·1. (a) Time history of u(t);

(b) phase plot; (c) spectrum with frequency of u(t).
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Substituting equation (22) into equation (64) yields

F
Hx'=0−b

2
+

k0

4v1x+0s2+
h0

4v1y− 3
2 av(x2 + y2)yH

H
H

+
1

4v
[(xk1 + yh1) cos (kT1)− (xh1 − yk1) sin (kT1)]H

g
H
Hy'=0−s

2
+

h0

4v1x+0−b

2
−

k0

4v1y+ 3
2 av(x2 + y2)x (65)

H
H
H +

1
4v

[(xh1 − yk1) cos (kT1)+ (xk1 + yh1) sin (kT1)].
f

By a similar technique as used in section 4.1 one can obtain the sufficient almost certain
stability of the trivial steady state solution of equations (65) as follows

s2
j Q 1

16 (2vb−zh2
0 + k2

0 )2, zh2
0 + k2

0 Q 2vb. (66)

Figure 29. Numerical results of equation (1): h0 = k0 =2·0, V0 =V1, s2
j =4·0. (a) Time history of u(t);

(b) phase plot; (c) spectrum with frequency of u(t).
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Figure 30. Numerical results of equation (1): h0 = k0 =2·0, V0 =V1, s2
j =100·0. (a) Time history of u(t);

(b) phase plot; (c) spectrum with frequency of u(t).

Since equations (65) contain the random terms h1, k1 and the time-varying
terms sin kT1, cos kT1, it is difficult to obtain the sufficient and necessary stability
conditions of the trivial solution. For the same reason it is difficult to obtain the steady
state moments.

Figure 31. Steady state response of Duffing system: h0 = k0 =0·5, V0 =2·0. (a) Ea; (b) Ea2.
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Substituting equation (14) into equation (64) yields

a'=−
b

2
a+

a
4v

[(k0 cos h− h0 sin h)+ k1 cos (h+ kT1)− h1 sin (h+ kT1)]

h'= s−3ava2 −
1

2v
[(h0 cos h+ k0 sin h)+ h1 cos (h+ kT1)+ k1 sin (h+ kT1)]. (67)

When (s, h) are located in the parameter area II or III and s2
j =0, equation (64) has

a non-trivial steady state response (a0, h0). When s2
j is small, the steady state moments

governed by equation (64) can be obtained by the perturbation method. Let
h1 = sj h�1, k1 = sj k�1, a= a0 + sj a1 + · · · , h= h0 + sj h1 + · · · . (68)

Substituting equation (68) into equations (67), and equating coefficient of like power of
sj , one obtains

a'1 =
a0

4v
[−(k0 sin h0 + h0 cos h0]h1 + k�1 cos (h0 + kT1)− h�1 sin (h0 + kT1)]

h'1 =−6ava0 a1 − bh1 −
1

2v
[h�1 cos (h0 + kT1)+ k�1 sin (h0 + kT1)].

(69)

The steady state moments Ea1, Ea2
1 can then be obtained by the modal analysis method

[9, 13].
Since it is difficult to analyze equation (1) theoretically in this case, the numerical

simulation is done here. In the numerical simulation, the parameters in systems (1) and
(49) are chosen as follows: N=500, g=0·1, o=0·1, b=0·5, a=0·1, v=1·0.

It is found that the effects of the random excitation are similar to the case in the principal
parametric response III, i.e., when s2

j increases, the trivial steady state solution of equation
(1) may lose its stability and the non-trivial steady state solution may be changed from
a limit cycle to a diffused limit cycle. Under some conditions the system may have two
steady state solutions and jumps can be observed. When h0 = k0 =0·5, V0 =2·0,
V1 =2+0·1k, the numerical results of the response of equation (1) are shown in Figure 31.
When h0 = k0 =2·0, V0 =2·0, V1 =2+0·1k, the numerical results of the response of
equation (1) are shown in Figure 32.

Figure 32. Steady state response of Duffing system: h0 = k0 =2·0, V0 =2·0. (a) Ea; (b) Ea2.
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7 CONCLUSION

For the first time, the method of multiple scales is used to investigate the principal
resonance of a Duffing oscillator to combined deterministic and narrow-band random
parametric excitations. Theoretical analyses and numerical simulations show that: (1)
When the intensity of the random excitation increases, the trivial steady state solution may
lose its stability and the system may have a non-trivial steady state solution. (2) When the
intensity of the random excitation increases, the non-trivial steady state solution may
change from a limit cycle to a diffused limit cycle. (3) Under some conditions the systems
may have two steady state solutions. (4) Under some conditions jumps may exist.
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